首页> 外文OA文献 >Computing Shortest Paths among Curved Obstacles in the Plane
【2h】

Computing Shortest Paths among Curved Obstacles in the Plane

机译:计算平面中曲线障碍物的最短路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A fundamental problem in computational geometry is to compute anobstacle-avoiding Euclidean shortest path between two points in the plane. Thecase of this problem on polygonal obstacles is well studied. In this paper, weconsider the problem version on curved obstacles, commonly modeled assplinegons. A splinegon can be viewed as replacing each edge of a polygon by aconvex curved edge (polygons are special splinegons). Each curved edge isassumed to be of O(1) complexity. Given in the plane two points s and t and aset of $h$ pairwise disjoint splinegons with a total of $n$ vertices, wecompute a shortest s-to-t path avoiding the splinegons, in$O(n+h\log^{1+\epsilon}h+k)$ time, where k is a parameter sensitive to thestructures of the input splinegons and is upper-bounded by $O(h^2)$. Inparticular, when all splinegons are convex, $k$ is proportional to the numberof common tangents in the free space (called "free common tangents") among thesplinegons. We develop techniques for solving the problem on the general(non-convex) splinegon domain, which also improve several previous results. Inparticular, our techniques produce an optimal output-sensitive algorithm for abasic visibility problem of computing all free common tangents among $h$pairwise disjoint convex splinegons with a total of $n$ vertices. Our algorithmruns in $O(n+h\log h+k)$ time and $O(n)$ space, where $k$ is the number of allfree common tangents. Even for the special case where all splinegons are convexpolygons, the previously best algorithm for this visibility problem takes$O(n+h^2\log n)$ time.
机译:计算几何中的一个基本问题是计算平面中两点之间的避免障碍的欧几里德最短路径。关于多边形障碍的问题的案例得到了很好的研究。在本文中,我们考虑了弯曲障碍物上的问题版本,该障碍物通常是建模的样条线。样条线可以看作是用凸曲线边缘代替多边形的每个边(多边形是特殊的样条线)。假定每个弯曲边缘的复杂度为O(1)。给定平面中的两个点s和t以及一组$ h $不成对的样条线,总共有$ n $个顶点,我们计算出避免样条线的最短s-t路径,即$ O(n + h \ log ^ {1+ \ epsilon} h + k)$时间,其中k是对输入样条曲线的结构敏感的参数,且上限为$ O(h ^ 2)$。特别是,当所有样条线都是凸的时,$ k $与样条线中自由空间中的公切线(称为“自由公切线”)的数量成比例。我们开发了用于解决一般(非凸)样条域上的问题的技术,该技术还改进了先前的一些结果。尤其是,我们的技术针对在计算$ h $个成对不相交凸样条线中总共有$ n $个顶点的所有自由公切线的无基础可见性问题,产生了一种最优的输出敏感算法。我们的算法在$ O(n + h \ log h + k)$时间和$ O(n)$空间中运行,其中$ k $是所有自由公切线的数量。即使对于所有样条线都是凸多边形的特殊情况,用于此可见性问题的先前最佳算法也需要$ O(n + h ^ 2 \ log n)$的时间。

著录项

  • 作者

    Chen, Danny Z.; Wang, Haitao;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号